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Abstract

Microalgal biofuels are a viable alternative for fossil fuels to reduce the
amount of greenhouse gases released into the atmosphere from fuel
consumption. However, microalgal biofuel production requires large
volumes of algae and costs approximately 50% more than traditional fuel
production. Therefore, there is a need to improve cell and lipid
productivities in the photobioreactor process. This project focuses on
determining cell productivity in the shaker flask and the traditional
mechanically-stirred bioreactor, the quantification of lipids by
spectroscopy, and the design of a novel space-saving bioreactor. The
strains studied are: Scenedesmus bijuga, Chlorella sorokiniana, and
Chlorella vulgaris.

The multiple cell strains grown in the shaker flask were kept at varying
conditions to determine the optimum environment for cell growth. The
cells did not grow when initially placed under fluorescent lights in a
standard shaker. As an alternative, a specifically-designed shaker for algal
culture with LED lights fixed on the interior ceiling was used. Cell growth
was monitored by measuring spectroscopic absorbance at wavelengths of
680 nm and 750 nm.

The traditional stirred tank bioreactor (STR) was operated with 2 L of algae
and was kept running for 10 days. The doubling time was observed to be
approximately forty-eight hours.

The novel space saving reactor consists of growing the algae on a substrate
surface rather than suspended in medium. Medium is sprayed over the
algae while it is attached to a supporting surface. This method significantly
increases the amount of algae produced per unit volume, since most of
the volume in the traditional reactor is water, and not biomass.

Algae biofuel and biomass production are limited by a lack of real-time
knowledge of viable cell growth, and cellular lipid content. Thus,
developing a real-time monitoring system for algae cultures is of great
advantage to effectively increase their productivity. Visible/near-infrared
spectroscopy was used to establish a low-cost sensor for lipids. In addition
to measuring the daily algal cell count with a hemocytometer, the cells
were stained with fluorescent Nile red dye in DMSO to observe the
intracellular lipid droplets from which biofuels are derived. The stained
cultures were then analyzed via fluorescent microscopy (reference
method) and spectroscopy, daily. Afterwards, these two methods were
correlated to ultimately identify a strong correlation in which the
implementation of spectroscopy is an effective real-time cellular lipid
monitoring system for microalgae.

Experimental Procedure

Shaker Platform: Stirred Tank Bioreactor:

Cells were transferred from 200 mL of cell culture with an optical density of
culture wvials (50 mL) into 11 was aseptically inoculated in a Sartorius
individual 250-mL flasks under Biotstat® Aplus bioreactor. It was then adjusted
aseptic conditions, then 50 mL of to 2 L with BG-11 culture medium.

BG-11 medium added to it. (flasks

to maintain ratio of 100 mL liquid

in 250-mL flask). Flasks of cells Optimization of a Cost-Effective Lipid

were incubated at 25°C with Monitoring System for Green Microalgae with
shaker speed 120 rpm with 60% Real-Time Applications:

humidity, LED light (Cool white,
6500K) at a diurnal schedule of 12
hours. CO, content was varied
from ambient (0.03%) to 2.5% v/v.

Fluorescence microscopy was selected to
quantify algal lipid concentrations; microscopy
with Nile Red lipophilic stain with DMSO as
solvent is an accepted reference method for algal
lipid detection.

Novel Space Saving Reactor: A design for low-cost, real-time lipid sensor
utilizing visible fluorescence micro-spectroscopy
monitoring system is being proposed for about
S4,000 (current systems cost upwards of
$25,000).To successfully establish it; the real-time
and time-point approaches were correlated using

Different porous media were
used was solid substates. Finally
filter paper (Size: 11 cm). 8 mL of
algal cell culture were filtered

through a glass filter paper, using
a Buchner funnel under moderate
pressure. The run off filtrate was

continuously re-filtered till all the
cells were seeded to the filter This would help establish a low-cost option for

medium. feedback control to optimize algal biofuel
production

statistical significance tests (“t-test”) to evaluate
the effectiveness of the spectroscopic monitoring
system.
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